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INTRODUCTION 

In facing decisions involving uncertain future events, people (hereafter the decision maker or DM) possess judgments 

(however tentative) as to the relative likelihoods of the possible events. If they knew for sure which event was going to 

occur, the action to undertake now (e.g. sell car, house etc.) would be evident. And this action could be undertaken even if 

the event in question were only “almost certain”. But when several events all reflect moderate or similar probabilities, the 

best action to implement is not so clear. 

To make the best decision, the DM should construct a structure around the possible events leading to analysis that would 

more clearly indicate the “optimal” action (e.g. sell, buy, wait) to undertake now. This means accurate assessment of event 

probabilities. First, he/she can order the relevant events from least to most likely with some events possibly exhibiting 

equal likelihood. The harder task is to now assign numbers reflecting how much “more likely” one event is than another. 

This pairwise comparison procedure forms the basis for a decision methodology articulated by Thomas L Saaty called the 

Analytic Hierarchy Process or AHP (1980). He later expanded this structure into the Analytic Network Process or ANP 

(2005). Saaty’s methodology encompassed the complete decision process leading to the choice of an optimal act or 

decision to implement. Here we restrict ourselves to using this methodology for the task of estimating probabilities for the 

possible events that will impact on the action taken. A modern review of AHP methodology is presented by Brunelli (2015). 

CREATING A STRUCTURE FOR ASSESSING PROBABILITIES 

Recall the events have been ordered from least to most likely. Taking the first two events in the ordering the structure 

requires a judgment as to the extent to which the more likely event (second event) exceeds the likelihood of the first 

event. Normalising the first event at 1.0 we can state that equal likelihood for the second event requires the same value 

1.0. But what if the second event’s likelihood is greater? If it were twice as likely, the number 2.0 reflects this as in 1.0 x 2. 

If it is less than twice as likely in the DM’s judgment, a number between 1.0 and 2.0 would be appropriate – the greater the 

value, the greater the relative likelihood of the second event over the first. If available, odds judgments can motivate the 

choice of the correct value. For example, a 3:1 event has a 25% chance of occurrence versus a 20% chance for a 4:1 event. 

Accordingly, the 3:1 event is 25% “more likely” than the 4:1 event (i.e. 5/4 or 1.25) and twice as likely as a 7:1 event (8/4). 

Choosing an appropriate “more likely” value may be easier for most DMs (with practice) than setting odds. Odds formation 

is typically based on a history of similar events whereas the situation for the DM will usually be unique to him/her. 

A nomenclature or taxonomy mapping qualitative “more likely” judgments (the primary judgments) into an appropriate 

value is detailed in Table 1. 

TABLE 1: NOMENCLATURE OR TAXONOMY FOR ASSIGNING “MORE LIKELY” VALUES BETWEEN 1.0 AND 2.0 

More Likely Pairwise Judgment of the DM Value Range Mid-Point 

   

Equal likelihood 1.0 1.0 

Small or slight increase in likelihood 1.0+ - 1.2- 1.10 

Moderate or significant increase in likelihood 1.2 - 1.80- 1.50 

Large or substantial increase in likelihood 1.80 – 2.0- 1.90 

Twice as likely 2.0 2.0 

 

For “more likely” values exceeding 2.0, the same procedure can be followed where 3.5 would indicate an event whose 

likelihood is between three and four times more likely (a somewhat imprecise judgment but all that might be possible ) 

than its less likely pairwise alternative. Note that persistent over-optimism (pessimism) in the likelihood judgments may 

cancel out in the series of relative pairwise assessments leading to a “correct” initial probability distribution. 



To illustrate the calculation of probabilities a three-event scenario is detailed in Table 2. Note that A is the least likely event 

and C the most likely event in the ordering. 

TABLE 2: PROBABILITY DERIVATION FOR A 3-EVENT SCENARIO WHERE EVENTS HAVE SIMILAR LIKELIHOOD 

Event 

Order 

Pairwise More 

Likely Value 

 

Compound Likelihood 

 

Probability 

Percent 

Probability 

     

A 1.00 1.00 1.00/4.4375 = 0.225  23 

B 1.25 1.00 * 1.25 = 1.25 1.25/4.4375 = 0.282 28 

C 1.75 1.00 * 1.25 * 1.75 = 2.1875 2.1875/4.4375 = 0.493 49 

     

  4.4375 1.000 100 

 

The pairwise “more likely” values in Table 2 reflect the judgments that B is 25% “more likely” than A and C is 75% “more 

likely” than B. That is, both B and C are significantly “more likely” than their less likely alternative but to differing degrees. 

Given the rudimentary or imprecise nature of the pairwise “more likely” judgments, a percentage probability seems 

appropriate for the final probability judgments in the last column of Table 2. Of course, the DM looking at the above may 

report the probabilities for A, B and C respectively at 20%, 30% and 50%. This could reflect a motivation to avoid any 

criticism of spurious accuracy. Alternatively, the DM may judge, on reflection, that the difference in probability between A 

and B to be of the order of 10% and not 5% as in the original calculations. 

In the reported calculations, we see that 50%/30% or 1.67 is less than the 1.75 used in Table 2. The initial “more likely” 

judgments or primary judgments may be rudimentary or tentative. Their main objective, however, is to establish the 

“ballpark” within which the DM can make his/her final assessments after full consideration of the resulting initial 

probability distribution as in Table 2. 

Note that if a judgment has one event say 10 times “more likely” than the alternative, the probability for the alternative 

(and all preceding events in the ordering) will be very low. In general, the larger (smaller) the latter pairwise values, the 

smaller (larger) the resulting probabilities for the preceding less likely events in the ordering. 

BAYESIAN REVISION 

Bayesian Revision allows us to update current probabilities in the light of “news” or information that arrives subsequently 

to the probabilities derived in Table 2. The Table 2 probabilities are the prior probabilities denoted as P’(A) etc. in Bayesian 

terminology. Subsequent to the “news” arrival, we desire to derive P(A│”news”) or P”(A) as well as P”(B) and P”(C) or the 

posterior probabilities. To illustrate the derivation, suppose the “news” in this case favours B most (hence B “most 

consistent” with the “news”) with A least consistent and C with intermediate consistency. Again, “more consistent” 

judgments are now required on the same basis as those for the “more likely” judgments above when deriving the prior 

distribution. Hence 1.0 for the least consistent event  and then pairwise consistent judgments successively up to the most 

consistent event. Illustrative judgments and likelihoods are shown below starting with 1.0 for event A. Note that the event 

ordering for consistency with the “news” is now A, C and finally B (most consistent). Table 3 details the likelihood 

calculations for the three events in this illustrative example. 

TABLE 3: LIKELIHOOD DERIVATIONS FOR THE POSSIBLE EVENTS AFTER THE “NEWS” BECOMES KNOWN 

Event 

Order 

Pairwise More 

Consistent Value 

 

Compound Likelihood 

 

Likelihood 

Percent 

Likelihood 

     

A 1.00 1.00 1.00/7 = 0.143 14 

C 2.00 1.00 * 2.00 = 2.00 2.00/7 = 0.286 29 

B 2.00 1.00 * 2.00 * 2.00 = 4.00 4.00/7 = 0.571 57 

     

  7.00 1.000 100 

 



Table 3 shows event B with a likelihood of 57% which is almost twice as consistent with the “news” as is event C at 29%. 

Similarly, event C is slightly more than twice as consistent as event A and all values accord closely enough with the 

illustrative primary judgments in Table 3. Note that if the primary judgments in Table 3 were respectively 1.0, 1.90 (i.e. C 

with a smaller likelihood gain over A than previously) and 2.15 (i.e. B with a greater likelihood gain over C than previously), 

the resulting likelihoods for A, C and B would be respectively 14%, 27% and 59%. 

In some cases, events will have zero consistency with the “news” leading to a likelihood value of zero. This means posterior 

probabilities for these events will be zero and they can be eliminated from further analysis. For our illustrative “more 

consistent” judgments in Table 3, Table 4 summarises the calculation of the posterior probabilities following the “news”. 

TABLE 4: DERIVATION OF THE POSTERIOR PROBABILITIES FOLLOWING THE “NEWS” 

 

Event 

 

Prior 

 

Likelihood 

 

Joint 

 

Posterior 

Posterior 

Percent 

      

A 0.225 0.143 0.225*0.143 = 0.032 0.032/0.334 = 0.096 10 

B 0.282 0.571 0.282*0.571 = 0.161 0.161/0.334 = 0.482 48 

C 0.493 0.286 0.493*0.286 = 0.141 0.141/0.334 = 0.422 42 

      

 1.000 1.000                          0.334                          1.000 100 

 

In this illustrative example, the “news” has promoted the probability of event B above that of C, although only a difference 

of 6% results. Again, the DM may report final probabilities for A, B and C respectively at say 10%, 50% and 40% to accord 

with generally accepted sensibilities on probability accuracy. Also, it may be the case that 10% represents a “threshold” 

value or difference in likelihood for our DM compared to a more marginal 6% difference. Alternatively, the DM may decide 

that equal likelihood at 45% for both B and C is the best assessment in the “ballpark” based on all information to date. If 

the alternative likelihoods above are utilized, the resulting posterior probabilities for A, B and C respectively would be 10%, 

50% and 40%. 

RATIONALE FOR THE PAIRWISE COMPARISONS OF LIKELIHOODS 

The direct estimation of event probabilities one at a time is a flawed process. The assessment of the probability of the last 

event considered is predetermined as one minus the sum of the previous event probabilities. This could be termed a 

residual probability. Alternatively, using a series of relative likelihood judgments in the first instance means all information 

on all events is utilized in deriving the initial probability distribution. 

Each event has certain attributes, properties, factors, causes etc. that interact and in totality determine its likelihood in the 

eyes of the DM. The second event in the comparison possesses similar attributes etc., possibly to different degrees, leading 

to a relative gain or loss in likelihood over the first event. In the absence of a standard measuring device for likelihood, the 

less likely event in the comparison serves as the “standard”. The more likely event is then assigned a value greater or equal 

to one (e.g. 1.1 or 10% greater) according to its assessed greater or equal likelihood. Apart from the least and most likely 

events, each event is compared against two other events ensuring some corroboration of its intrinsic likelihood. 

It may be envisaged theoretically that it is possible to delineate all such attributes, causes etc. and analytically assess their 

individual importance for a likelihood estimate for each event. This could be a full AHP analysis with a sophisticated 

hierarchy of cause and effect leading to resulting probabilities for the respective events. The methodology presented here 

presumes this to be beyond the capabilities of the DM but that he/she can intuitively synthesize this myriad of causations 

into an overall percentage gain in likelihood for one event over another in the pairwise comparison. Hence there results a 

percentage judgment that one event is 10% (slightly), or 50% (significantly) or 90% or more (substantially) “more likely” 

than the other event. 

Even if the DM uses an incomplete and/or incorrect likelihood assessment framework for these “more likely” judgments, 

he/she may fortuitously approach the correct relative likelihoods in a series of pairwise comparisons resulting in a 

“correct” initial probability distribution. That is, faulty or incomplete reasoning can still be useful if it is applied consistently. 



Using the current one-event-at-a-time methodology but with the same cognitive limitations, DMs must undertake the 

harder task of estimating probabilities directly. The methodology outlined here requires similar but less demanding 

judgments in the first instance. 

CONCLUSIONS 

Estimating probabilities of uncertain events one at a time as done traditionally is a flawed process. This approach means 

that the last event in the procedure has its probability predetermined at one minus the sum of the probabilities of the 

previously assessed events (a residual probability). This could mean a series of reassessments may be necessary before a 

final probability distribution is arrived at.  

Imposing a structure on the process as outlined here (first an ordering and secondly a series of pairwise or primary 

judgments) means no probability is determined as a residual probability. Also, any series of distribution reassessments is 

avoided, apart from any final judgments by the DM as illustrated above. Furthermore, in deriving the initial or “ballpark” 

probability distribution, all information on all events is utilized in the first instance.  And all calculations can be completed 

by a numerate layperson on the back of an envelope with only a calculator. 
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